
4.0 Setup 0FS Apache
Apache HTTP Server is an open-source web server platform. This article will outline the steps to install, configure, harden a zero-footprint
instance of Apache 2.2 & 2.4, with particular focus on the nuances between each.

Prerequisites

If you are building you zero-footprint for the first time you will need a C/C++ compiler available on the initial system. Once compiled, the resulting
package is portable to other like-O/S servers. For the most part, most Unix/Linux distributions will come packaged with the gcc compiler.
Unix/Solaris

Check if gcc compiler is installed:

$ which gcc

dependent on environment
variables being set correctly.
Alternatively check the
/usr/bin and /usr/sfw/bin paths.

If no compiler found, install it:

$ pkg install gcc-3 # or
whatever version you need

Linux

Chech if gcc compilete is installed:

$ which gcc

If no compiler found, install it:

Debian/Ubuntu
$ sudo apt-get install
build-essential

RHEL/CentOS/Fedora
$ sudo yum group install
"Development Tools"

Initial Installation

1) Get Source Files

The first step is to retrieve the source files from Apache. Grab the compressed files pertinent to the O/S you are using, typically bzip2 for Unix
and gunzip for Linux:

Change dir to whichever working directory you want to use
$ cd /opt

Change version number/archive type as required - current version is
2.4.9
$ wget --no-check-certificate
https://archive.apache.org/dist/httpd/httpd-2.4.9.tar.bz2 [-e
use-proxy=yes -e https_proxy=xxxxx]

Apache also provides MD5 hashes to verify your downloads, so you could do
the following to generate a local MD5 hash to compare
wget -O - https://archive.apache.org/dist/httpd-2.4.9.tar.bz2 | tee
httpd-2.4.9.tar.bz2 | md5sum > md5sum.local

Unpack the archive:
Unix/Solaris

Use -k switch to preserve the
original archive
$ bzip2 -d[k]
httpd-2.4.9.tar.bz2
$ tar -xvf httpd-2.4.9.tar -C
/opt/httpd/

Linux

$ tar -xzvf httpd-2.4.9.tar.gz
-C /opt/httpd/

2) Compile Apache

Next, we will compile Apache. Different versions require different steps, so choose your version below:

Apache 2.2 and earlier Setup:

$ cd /opt/httpd

First we configure the build using the following syntax
./configure --prefix=/opt/apache2 --enable-mods-shared=few
[--enable-{modname}] [--disable-{modname}] [with-apr=included]
[with-pcre=/opt/pcre]

Here is the most common configuration
./configure --prefix=/opt/apache2 --enable-mods-shared=few
--enable-rewrite --enable-headers --enable-ssl --disable-userdir
--disable-autoindex --disable-status --disable-env --disable-setenvif
--disable-cgi --disable-actions --disable-negotiation --disable-alias
--disable-include --disable-filter --disable-version --disable-asis
--with-apr=included --with-pcre=/opt/pcre

$make
$make install

Apache 2.4 Setup:
Since Apache 2.4, the Apache Portable Runtime and the Perl Compatible Regex modules are no longer packaged with the original
source. However, these modules are mandatory for Apache to compile and run.

Click here to find out why you need these libraries...

APR

The APR library provides a set of APIs that map to the underlying O/S and emulate functions if they are not available, making
Apache platform-agnostic.

PCRE

The PCRE library provides more powerful and flexible regex expression functionality than other flavours and is used by
mod_rewrite, etc.

Apache provides the flexibility to point to existing instances of these when compiling. If you do not have these modules you can add
them as follows:

First, download the module source files:

$ wget http://archive.apache.org/dist/apr/apr-1.6.3.tar.bz2
$ wget http://archive.apache.org/dist/apr/apr-util-1.6.1.tar.bz2

Apache 2 requires pcre, not pcre2
$ wget --no-check-certificate
https://ftp.pcre.org/pub/pcre/pcre-8.41.tar.bz2

Extract the source files:

Here it is important to understand what each switch is doing and the implications of each.

Configure Command Switch What does it do?

APR and APR utils can be compiled with Apache out of the box
provided they are in the srclib directory. # NOTE, the contents of
the untarred folders must be copied to a folder under srclib with the
exact names # below:
$ tar -x[z]vf apr-1.6.3.tar[.gz] --directory
/opt/httpd-2.4.x/srclib/apr
$ tar -x[z]vf apr-util-1.6.1.tar[.gz] -- directory
/opt/httpd-2.4.x/srclib/apr-util

PCRE will not be automatically compiled in the srclib directory, so
either manipulate the build script or simply keep it separate.
$ tar -x[z]vf pcre-8.41.tar[.gz]

If you've placed PCRE in its own folder, you will have to build it first:

$./configure --prefix=/opt/pcre --enable-pcre16 --enable-pcre32
$ make
$ make install

Apache 2.4 requires the use of specific options for APR and APR utils to install. Here is a standard configuration for Apache 2.4:

$ cd /opt/httpd

First we configure the build using the following syntax
./configure --prefix=/opt/apache2 --enable-mods-shared=few
[--enable-{modname}] [--disable-{modname}] [with-apr=included]
[with-pcre=/opt/pcre]

Here is the most common configuration
$./configure --prefix=/opt/apache2 --enable-mods-shared=few
--enable-rewrite --enable-headers --enable-ssl --disable-userdir
--disable-autoindex --disable-status --disable-env --disable-setenvif
--disable-cgi --disable-actions --disable-negotiation --disable-alias
--disable-include --disable-filter --disable-version --disable-asis
--with-included-apr --with-included-apr-util --with-pcre=/opt/pcre

$make
$make install

--prefix Sets the output directory for the build i.e. where Apache will reside. This direcory specification will
have a direct impact on portability of the 0FS package. Read more in the Portability section.

--enable-mods-shared=value or

--
enable-mods-shared={module_names}
(space-delimited)

Sets which modules will be compiled as DSOs (shared libraries). Options are "all" | "most" and in 2.4
and higher also "few" | "none" | "reallyall".

--enable-{module_name} or

-- enable-modules={module_names}
(space-delimited)

Enables the module for the build. Shared or static inclusion is determined by the underlying APR as
will as the --enable-mods-shared directive. For example, with Apache 2.4, the standard APR supports
DSOs, so it would compile the module as shared, unless the --enable-mods-shared is set to "none",
which will force it to be compiled as static.

--disable-{module_name} Disables the module for the build. The module will not be compiled at all, so you will not even be able
to add it dynamically later through Apache configuration without either recompiling Apache in full or
compiling the module itself and copying it into the modules directory of the Apahce install

--with-{module_name}=path|included Used to specify specific path to find compiled modules if not using the defaults included with source.
The included value will force the build to use the one included with Apache source.

Click here to see a description of each module

Here

Module Min.
Apache
V2
Version

Included What does it do? Reasons to include/exclude

Default Most Reallyall Few

mod_access_compat 2.4 Yes YES Control access based on client
hostname, IP address or other
characteristics of client request

mod_actions 2.0 No Lets you run CGI scripts when a
particular file or method is used in a
request

Exclude if not using CGI scripts or have
no need to execute scripts conditionally
based on requests. XSS vulnerability
considerations. If included, ensure
request parameters are not considered
when making decisions based on
content type

mod_alias 2.0 Used for simple URL manipulation
tasks, including mapping URLs to
filesystem paths and standard
redirection.

mod_allowmethods 2.4 Restricts what HTTP methods can be
used on a server

mod_asis 2.0 Allows you to send a document
without adding the usual HTTP
headers

mod_auth_basic 2.2 Used to restrict access with HTTP
Basic Auth. Should be combined with
at least one authentication module and
one authorization module.

If this type of authentication is required,
it is nearly imperative to use SSL as
passwords are sent as almost plain text
(base4 encoded).

mod_auth_digest 2.0 Used to implement HTTP Digest Auth. If this type of authentication is required,
it is nearly imperative to use SSL as an
attacker can force the browser to
downgrade to basic auth. The
passwords are stored unsecurely on the
server.

mod_auth_form 2.4 Allows the use of an HTML login form
to restrict access

Depends on mod_session modules and
makes use of HTTP cookies, which is
susceptible to XSS attacks.

mod_authn_anon 2.2 Authentication - Provides anonymous
user access to authenticated areas

mod_authn_core 2.4 Authentication - Provides core
authentication capabilities

mod_authn_dbd 2.2 Authentication - Provides
authentication against SQL tables

mod_authn_dbm 2.2 Authentication - Provides
authentication against dbm password
files

mod_authn_file 2.2 Authentication - Provides
authentication against plain text
password files

mod_authn_socache 2.4 Authentication - Maintains shared
object cache of authentication
credentials

mod_authnz_fcgi 2.4[.10] Authorization - FastCGI authorizer
application

mod_authnz_ldap 2.2 - Provides authorizationAuthorization
through an LDAP directory

mod_authz_core 2.4 Authorization - Provides core
authorization capabilities

mod_authz_dbd 2.4 Authorization - Provides group
authorization based on SQL database

mod_authz_dbm 2.2 Authorization - Provides group
authorization based on dbm files

mod_authz_groupfile 2.2 Authorization - Provides authorization
against plain text files

mod_authz_host 2.4[.19] Authorization - Provides authorization
based host (name or IP)

mod_authz_owner 2.2 Authorization - Provides authorization
based on file ownership

mod_authz_user 2.2 Authorization - Provides authorization
based on authenticated user

mod_autoindex 2.0 Generates directory indexes Exclude in most cases. Be sure to
disable index generation in Apache
configuration as shown in Hardering
section below.

mod_brotli 2.4[.26] Compresses content using Brotli
before its delivered to the client

mod_buffer 2.4 Support for request buffering Exclude in most cases. Reads the
request into RAM and then repacks into
fewest memory buckets possible.
However, at the cost of CPU time. If
request/response is already efficiently
packed, this could have adverse affects
on processing time.

mod_cache 2.0 HTTP caching filter If included be aware that
CacheQuickHandler is on by default
which circumvents Allow and Deny
directives.

mod_cache_disk 2.4 Disk based storage for mod_cache

mod_cache_socache 2.4 Implements a shared object cache
storage for mod_cache

mod_cern_meta 2.0 Emulate CERN HTTPD Meta file
semantics

mod_cgi Yes Allows execution of cgi scripts Exclude if not required. Considerations
for exploits including ShellShock, etc. If
invoking bash scripts, ensure bash
version is > 4.3

mod_cgid 2.0 Allows execution of cgi scripts (used
for certain Unix multi-threaded
environments only)

Ibid.

mod_charset_lite 2.0 Allows the server to change the
character set of responses before
sending them to the client i.e. if files
are stored as EBCDIC, it can be
translated to ISO

mod_data 2.4 Converts response body into an
RFC2397 data URL

Exclude if not required. XSS attacks
have been reported in applications
leveraging mod_data such as Moodle,
etc.

mod_dav 2.0 Enables creating, moving, copying,
and deleting of resources and
collections on a remote web server

This should be excluded unless
absolutely necessary. DLL Hijack
exploits, etc. are widely
known/reported. If including, ensure
the server is secure before enabling with
some type of authentication.

mod_dav_fs 2.0 Filesystem provider for mod_dav.
Prerequisite is mod_dav.

Ibid.

mod_dav_lock 2.2 Generic locking API used by backend
provider for mod_dav. Prerequisite is
mod_dav and backend provider such
as mod_dav_svn

Ibid.

mod_dbd 2.2 Enables APR to manage db
connections

Exclude if not required. Considerations
for SQL injection attacks especially
when using third-party modules in
conjunction.

	4.0 Setup 0FS Apache

