
5.3 Cloud
Parts of the Cloud

There are many ways to build a Cloud and there are also various levels of clouds. This landscape is constantly evolving so note history of
major evaluations,

Dec to Jan 2016 - value, but not for large enterprise org adoption,
Technology is still too immature.
Leaders really in infrastructure as code.
But missing discovery, network orchestration.
Relying on native Cloud provided services that are also not mature.
Savings to be had, but large Enterprise should not fully adopt yet.
All Cloud providers different enough that there is market for a single cloud orchestrator.
Cloud providers or key drivers like IBM should focus on CICD pipeline as a product offering for large Enterprise.
Docker is compelling, but more immature than people realize for applications outside of specific Netflix type industry.
Kuberneties is compelling.
Still big gaps on how to solve for basics and Security as usual is an afterthought.

Sep to Dec 2017 - still not ready, but Enterprise should think about experimenting in and adopt DevOps + OpsDev and CICD,
Cloud Density is something that can save orgs tons of money in adoption, but industry not ready for that concept yet.
Terraform is compelling and Cloud agnostics as as Infrastructure as Code platform and Pipeline.
More reading I have concerns about Puppet becoming a hinderance over time.
Docker by itself is still not ready for Enterprise outside of experimenting, but can be an ok container selection for now due to
popularity for stateless applications
Security starting to become more important but I don't see any key players yet and native cloud still lacking (but moving in
the right direction)

Jan 2018 - technology is now very close to viable,
Configuration management finally distinct via Habitat
Finally found things around Network as infrastructure

...

Before we get too deep, we should look at the key Cloud
Advantages to look at the why to then implement using Path to

.Cloud

Driving Cloud Concepts

Infrastructure as Code - ...

Elasticity - to grow and shrink as needed.

Table Legendb

Colour Note

De Facto Leader Emerged

Emerging

This table aims to cover the key aspects and list various options from top down.

Component Why You Need It What Does it
Do

Driving Cloud
Concept

BonsaiFramework Pick Popular Options

Security Scanning Scan for viruses, missed hardening and
accidental data leakage. Varies
depending on your needs, but there are
some free scanning services now.

UpGuard (reviewing)

Security Intrusion
Detection

Look for any intrusions in the system.

Synthetic
Monitoring

Dynatrace

Health Check

System Monitoring

Application Insight
Monitoring

Look inside the code to determine
performance and support Production
problems inside the code.

n/a Microsoft Azure - Application
Insight (free and powerful)

Dynatrace was previous winner
for stand alone.

Cloud Provider Module

Dynatrace
CA APM (previously Wily
Introscope)

Integrity Verifciation Confirm and audit any changes to the
system.

DOS and DDOS
Mitigation

There is some argument that going true
cloud no longer requires this. I'm not
convinced.

n/a Akamai.

However, for smaller
implementations Cloud Provider
built-in services may be enough.

Akamai
VeriSign

http://www.bonsaiframework.com/wiki/display/bonsai/Path+to+Cloud
http://www.bonsaiframework.com/wiki/display/bonsai/Path+to+Cloud
https://www.upguard.com/features

Customer Caching Take load off of your system. Elasticity Akamai.

However, for smaller
implementations Cloud Provider
built-in services may be enough.

Akamai
Cloud Providers

Orchestration of
Containers &
Service Discovery

Unified view and control of containers who
should hook themselves up and configure
to the larger group.

Elasticity etcd used by Kubernetes
(started by Google)
Swarm (Native Docker)
ZooKeeper used by Mesos
phere +
Marathon (preferred by
DC/OS)
Chef (to a certain extent
through infrastructure

)automation
Eureka (by Netflix) used
by Spring Cloud but
services must be stateless
and network non-sticky
HashiCorp Console

Comparison (to be made)

Application
Packaging

Means to create application packages and
manage centrally.

Zero Footprint
AppDev Model

Automation and configuration
that travels with the application.
There is some overlap here with
configuration management, but I
believe in keeping them
separate.

Zero Footprint with Scripts
Habitat

Software Defined
Network

Infrastructure as
Code.

Cloud Provider Module or
Container Technology

Microsoft Azure
Amazon AWS
Google Cloud Platform
Rackspace
HashiCorp Console

Virtualization Cloud
Provider

No point in running the hardware and
base OS yourself. Instead use a provider
that will take care of auto-scaling
hardware, providing IP addresses, storage
and a network infrastructure.

Bonus points for instituted caching and
monitoring. ++ Bonus points for an proven
CICD system.

Some of the Bonus items you can
implement yourself and are documented
higher in this stack.

n/a At the moment (2016)

Microsoft Azure for ease of use.

Microsoft Azure
Amazon AWS
Google Cloud Platform
Rackspace

Environment
Configurator

If you have lots of integration points,
centralizing one place to configure those
small differences suddenly becomes cost
effective.

This is not actually service discovery
(though having it helps immensely)

Remove
infrastructure
dependency.

Habitat (tackles
applications provided you
use it's packaging)
Ansible

Continuous Code
Testing

Continous
Infrastructure
Testing

Chef Kitchen

Code Unit Testing jUnit

Continuous
Integration &
Deployment

When build completes auto deploy and
hook up. Be the workflow engine to
manage CI/CD pipeline from source to
delivery

Jenkins
Bamboo

Continuous Build Building Application Virtualization from
Recipes. Think entire ecosystem (not just
code) is built from recipes.

Jenkins
Bamboo

Source Control for
Code

Bitbucket or direclty GitHub GitHub
Bitbucket (Atlassian
Product fronting GitHub)
Mercurial
Subversion (Does not
scale for Agile well)

Packer

https://docs.docker.com/swarm/
https://www.chef.io/solutions/infrastructure-automation/
https://www.chef.io/solutions/infrastructure-automation/
https://www.habitat.sh
https://kitchen.ci/

Centralized Log
Aggregation and
Alerting

Simplification of adapters to be pipeline
will likely emerge as part of Cloud
Providers and container technology.

Remove
infrastructure
dependency.

Splunk

Application Caching
System

Lots of noSQL databases in this space. saves
application
data apart
from the
application
instance so
data is still
available for
application
<X + 1>
when
application
<X> goes
down

Messaging System Guarantee delivery and integrity of key
transactions across systems.

Depends on your specific
messaging needs.

Will break this up later.

Kafka
RabbitMQ

Application
Virtualization

Microservices concept of running
ephemeral containers at the focusing on
escalating a single immutable application.

Building
from
Recipes
Linking of
Containers

Docker Docker

Configuration
Management and
Building
Applications and
Integration from
Recipe

Often initiated by the CI/CD pipeline
control to build the operating system,
setup users, install software and apply
configuration.

Configuration
Management and
Infrastructure as
Code.

This includes
SDN (Software
Defined
Networking)
which is still a
growing space as
the what's
available is still
rudimentary.

Chef and Puppet are leading
(2017) configuration
management tools.

However, they don't solve
(without fiddling) stateful
applications requiring workflow
deployment, ie upgrade of a
database.

Chef
Puppet
Docker (do for more than
just the os and base?)
Ansible
SaltStack
Terraform

Comparison

Automation of
Cloud Infrastructure

The big cloud providers provide true
infrastructure as code to provision (build
and manage) all your resources (virtual
machines, network, ect...).

Often tightly paired and confused with with
Configuration Management and CICD
tools.

Infrastructure as
Code

Azure ARM (Azure
Resource Manager
Templates)
Amazon AWS CFN (Cloud

) TemplatesFormation

Higher level,

Terraform and Vagrant (for
Devs)

Optimized
Operating System
for Containers

Newish concept of lightweight
transactionally updated operating system.
Solaris had the transactional aspect a
while back.

Google CoreOS
Ubuntu Snappy
RedHat Atomic

Distributed
Operating System
for Containers

Similar in concept to what Hadoop
technology solves for databases.

Elasticity Mesosphere Enterprise
DC/OS

Apache Mesos
(distributed systems
kernel)
Apache ZooKeeper
(distributed
coordination)
Apache Marathon
(container
orchestration)

http://www.bonsaiframework.com/wiki/display/bonsai/Comparison+-+Configuration+Management+Tools
https://www.terraform.io/
http://www.bonsaiframework.com/wiki/display/bonsai/Comparison+-+Configuration+Management+Tools
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://www.terraform.io/

Operating
Virtualization

Docker focuses on ephemeral container’s
and single process as a practice for
application isolation.

However, LXC now LXD, diverged to
focus on overall system density by
isolation of the OS itself. Because of this,
in my view, LXD lends itself to vendor
packaged and data enterprise solutions.

The technologies are designed to be
compatible so you can take advantage of
OS isolation through LXC with Docker
running inside.

Cloud Density LXD (LXC)

Research

To watch this video - https://mesosphere.com/product/

Rackspace now provides consulting and support to build your own private cloud on OpenStack - http://www.rackspace.com/cloud/private_edit
ion/

Rackspace even provides their Reference Architecture online - http://www.referencearchitecture.org/

Ubuntu has a program called Jumpstart for $9,000 for 5 days to help you build your own private cloud with UEC (Ubuntu Enterprise Cloud)
previously powered by Eucalyptus now powered by OpenStack at http://www.ubuntu.com/cloud

This might be a worthwhile setup tutorial - http://cssoss.wordpress.com/2011/04/27/openstack-beginners-guide-for-ubuntu-11-04-installation-
and-configuration/

https://mesosphere.com/ - Dickson recommended

https://www.ansible.com - Dickson recommended

Best Practices for Cloud from IBM - http://www.ibm.com/developerworks/websphere/techjournal/1404_brown/1404_brown.html

Cloud Infrastructure design strategies - http://realscale.cloud66.com/cloud-server-scaling-strategies/

MicroServices strategies - http://www.kennybastani.com/2016/04/event-sourcing-microservices-spring-cloud.html

Service Discovery Discussion - https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/

Very good article on IAC and differences btw Configuration Management and Provisioning, also declarative vs procedural tools - https://blog.g
runtwork.io/why-we-use-terraform-and-not-chef-puppet-ansible-saltstack-or-cloudformation-7989dad2865c

Looks at state challenges in relation to container technology - https://dzone.com/articles/containerizing-stateful-applications

12-Factor App... to read - https://12factor.net/

Good 2017 overview of Puppet and Chef - https://www.upguard.com/articles/puppet-vs.-chef-revisited

Adds on the above tools but not clear on what exactly - https://xebialabs.com/products/

http://www.bonsaiframework.com/wiki/display/bonsai/Cloud+Density
https://mesosphere.com/product/
http://www.rackspace.com/cloud/private_edition/
http://www.rackspace.com/cloud/private_edition/
http://www.referencearchitecture.org/
http://www.ubuntu.com/cloud
http://cssoss.wordpress.com/2011/04/27/openstack-beginners-guide-for-ubuntu-11-04-installation-and-configuration/
http://cssoss.wordpress.com/2011/04/27/openstack-beginners-guide-for-ubuntu-11-04-installation-and-configuration/
https://mesosphere.com/
https://www.ansible.com
http://www.ibm.com/developerworks/websphere/techjournal/1404_brown/1404_brown.html
http://realscale.cloud66.com/cloud-server-scaling-strategies/
http://www.kennybastani.com/2016/04/event-sourcing-microservices-spring-cloud.html
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://blog.gruntwork.io/why-we-use-terraform-and-not-chef-puppet-ansible-saltstack-or-cloudformation-7989dad2865c
https://blog.gruntwork.io/why-we-use-terraform-and-not-chef-puppet-ansible-saltstack-or-cloudformation-7989dad2865c
https://dzone.com/articles/containerizing-stateful-applications
https://12factor.net/
https://www.upguard.com/articles/puppet-vs.-chef-revisited
https://xebialabs.com/products/

	5.3 Cloud

